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We study the kinematics of multigrid Monte Carlo algorithms by means of 
acceptance rates for nonlocal Metropolis update proposals. An approximation 
formula for acceptance rates is derived. We present a comparison of different 
coarse-to-fine interpolation schemes in free field theory, where the formula is 
exact. The predictions of the approximation formula for several interacting 
models are well confirmed by Monte Carlo simulations. The following rule is 
found: For a critical model with fundamental Hamiltonian 24r the absence 
of critical slowing down can only be expected if the expansion of {Jt'(~ + ~))  
in terms of the shift 0 contains no relevant (mass) term. We also introduce a 
multigrid update procedure for non-abelian lattice gauge theory and study the 
acceptance rates for gauge group SU(2) in four dimensions. 

KEY WORDS: Computer simulations; critical slowing down; multigrid 
Monte Carlo algorithms; acceptance rates; spin models; lattice gauge theory. 

1. I N T R O D U C T I O N  

M o n t e  Car lo  s imula t ions  have become an i m p o r t a n t  tool  for the s tudy of 
cri t ical  p h e n o m e n a  in s ta t is t ical  mechanics  (x) and  in Eucl idean  q u a n t u m  
field theory  on  the lattice. (2) However ,  the m e t h o d  has l imita t ions .  In  the 

vicinity of  a cri t ical  po in t  the p h e n o m e n o n  of  cri t ical  s lowing down ( C S D )  
is a ser ious p rob lem:  for conven t iona l  local  a lgor i thms  the au toco r r e l a t i on  
t i m e - - t h a t  is, rough ly  speaking,  the t ime used to genera te  a new "stat is t i -  

cal ly independen t"  c o n f i g u r a t i o n - - g r o w s  rap id ly  as the system a pp roa c he s  
cri t icali ty.  M o r e  precisely,  the au toco r r e l a t i on  t ime r behaves  like ~ ~ ~z, 
where ~ denotes  the cor re la t ion  length,  and  z is the dynamica l  cri t ical  expo-  
nent.  F o r  conven t iona l  local  a lgor i thms,  z ~ 2. Thus,  when the cri t ical  
po in t  is app roached ,  there  is a d r a m a t i c  increase of c o m p u t e r  t ime needed 
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to calculate observables to a given accuracy. It is therefore important to 
devise new Monte Carlo algorithms that have reduced CSD. 

For accelerated local algorithms such as overrelaxation or the 
optimized hybrid Monte Carlo algorithm, one can sometimes achieve 
z ~  1 (3 5) (see ref. 4 for a recent review). In an attempt to overcome the 
problem of CSD completely (in the sense of z ~ 0), various nonlocal Monte 
Carlo algorithms have been developed. 

Cluster algorithms (6) are successful in overcoming CSD for a large 
class of models. The alternative is multigrid Monte Carlo. (7 9) In this 
paper, every algorithm that updates stochastic variables on a hierarchy of 
length scales is called a multigrid Monte Carlo algorithm. There are models 
where no successful cluster algorithms have been found, whereas multigrid 
Monte Carlo algorithms work. (1~ 

Presently, the only generally applicable method to study algorithms 
for interacting models is by numerical experiment. For some models 
experiments show that the dynamical critical exponent z can be sub- 
stantially reduced by a multigrid algorithm. (11-14) For other models, still 
z ~ 2  is found. (15'16) An improved theoretical understanding of multigrid 
Monte Carlo algorithms is therefore desirable. 

We present a method that can help to judge which algorithms will 
have a chance to overcome CSD in simulations of a given model before 
performing the simulation: We study the kinematics of multigrid Monte 
Carlo algorithms. 3 By kinematics we mean the study of the scale (block 
size) dependence of the Metropolis acceptance rates for nonlocal update 
proposals. We do not address the more difficult problem of analytically 
investigating the dynamical critical behavior of the stochastic processes 
involved. Our analysis is nonetheless of relevance because sufficiently high 
acceptance rates are necessary for multigrid Monte Carlo procedures to 
overcome CSD. 

We derive an approximation formula for the block size dependence of 
acceptance rates for nonlocal Metropolis updates. The influence of the 
coarse-to-fine interpolation kernel (shape function) on the kinematics in 
free field theory, where the formula is exact, is investigated in detail. 

The formula is then applied to several interacting models. It turns out 
to be a very good approximation. We find necessary criteria for a given 
multigrid algorithm to eliminate CSD: For a critical model with a funda- 
mental Hamiltonian ~'~(~b), absence of CSD can only be expected if the 
expansion of (Jf(~b + ~) )  in terms of the shift ~ contains no relevant term 
(mass term). 

After introducing the study of the kinematics of multigrid Monte 

3 Parts of this paper have been published in short form in ref. 17. 
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Carlo in the context of spin models, where the multigrid methods have 
already been developed, we demonstrate that our analysis is also useful for 
the design of new multigrid procedures. 

There is an urgent demand for accelerated Monte Carlo algorithms in 
lattice gauge theory. The present state-of-the-art algorithm is overrelaxa- 
tion (~g~ (see ref. 19 for a review). However, effort has also been spent in 
developing nonlocal algorithms for gauge theories. An efficient cluster algo- 
rithm was found for SU(2) gauge theory at finite temperature, but only in 
the special case N~ = 1. (2o) For a recent cluster algorithm approach to U(I) 
gauge theory see ref. 21. Multigrid algorithms for U(1) gauge models were 
introduced and studied in two and four dimensions. (13'22) A different but 
related nonlocal updating scheme in the Abelian case is the multiscale 
method.(23) 

In this paper, we propose a multigrid algorithm for non-Abelian gauge 
theory and analyze its kinematics. Our approximation formula turns out to 
be very reliable also in this case and allows for a prediction of acceptance 
rates for a large class of nonlocal updates. 

This paper is organized as follows: In Section 2 we introduce multigrid 
Monte Carlo algorithms. Section 3 contains the derivation of our approxi- 
mation formula for acceptance rates. Several coarse-to-fine-interpolation 
kernels are discussed in Section 4. In Section 5 the acceptance rates in free 
field theory are examined in detail. The kinematical analysis for the sine- 
Gordon, XY, and q~4 models is presented in Section 6. In Section 7 we 
propose a multigrid procedure for non-Abelian gauge theories and analyze 
its kinematics. A summary is given in Section 8. 

2. MULTIGRID MONTE CARLO ALGORITHMS 

We consider lattice models with partition functions 

Z=f ~ d~bxeXpE-Yf(~b)] (1) 
x~Ao 

on cubic d-dimensional lattices Ao with periodic boundary conditions. The 
lattice spacing is set to one. We use dimensionless spin variables ~b x. An 
example is single-component ~ba-theory, defined by the Hamiltonian 

~(~b)=~(~b,-A~b)+ 2 x - 

where 

( ~ , - ~ ) =  ~ (~x-O,) = (3) 
( x , y )  
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The sum in Eq. (3) is over all nearest neighbor pairs in the lattice. (The 
definitions for lattice gauge theory will be introduced in Section 7.) 

A standard algorithm to perform Monte Carlo simulations of a model 
of the type defined above is the local Metropolis algorithm: One visits 
in a regular or random order the sites of the lattice and performs the 
following steps: At site Xo, one proposes a shift 

~)~o~'o=Oxo+ S (4) 

The configuration {~bx} remains unchanged for x # Xo. Here s is a random 
number selected according to an a priori distribution p(s) which is 
symmetric with respect to s ~ - s .  For example, one selects s with uniform 
probability from an interval I - e ,  ~]. One then computes the change of the 
Hamiltonian 

A ~  = ~ ( ~ ' ) -  ~ ( ~ )  (5) 

Finally the proposed shift is accepted with probability min [ 1, e x p ( -  A ~ ) ] .  
Then one proceeds to the next site. 

The local Metropolis algorithm suffers from CSD when the correlation 
length in the system becomes large: long-wavelength fluctuations cannot 
efficiently be generated by a sequence of local operations. It is therefore 
natural to study nonlocal generalizations of the update procedure defined 
above. 

Consider the fundamental lattice Ao as divided in cubic blocks of size 
U. This defines a block lattice A1. By iterating this procedure, one obtains 
a whole hierarchy of block lattices Ao, AI ..... A/r with increasing lattice 
spacing. This hierarchy of lattices is called a multigrid. 

Let us denote block lattice points in Ak by x'. Block spins q~x, are 
defined on block lattices Ak. They are averages of the fundamental field ~bx 
over blocks of side length LB = lk: 

~ , = L ~  d 2~/2L~d ~ (~ (6) 
X E X '  

The sum is over all points x in the block x'. The Ls-dependent factor in 
front of the average comes from the fact that the corresponding dimen- 
sional block spins are measured in units of the block lattice spacing: A 
scalar field ~(x) in d dimensions has canonical dimension ( 2 -  d)/2. Thus 
O(x) = a(2-d)/zOx, where a denotes the fundamental lattice spacing. Now 
measure the dimensional block spin ~(x ' )  in units of the block lattice 
spacing a': 45(x')=a'(2-d)/245x ,, with a' =aLs. If we average in a natural 
way ~(x')=L~dZx~x,(~(x)  and return to dimensionless variables, we 
obtain Eq. (6). 
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A nonlocal change of the configuration ~b consists of a shift 

Ox--, Ox + SOx (7) 

s is a real parameter, and the "coarse-to-fine interpolation kernel" (or 
shape function) Ox determines the shape of the nonlocal change. ~h is 
normalized according to 

L ;  d Z (8) 
x ~ x '  

Note that by the nonlocal change (7), the block spin is moved as Ox,-~ 
Ox,+S for x'=X'o, and remains unchanged on the other blocks. The 
simplest choice of the kernel ~, that obeys the constraint (8) is a piecewise 
constant kernel: ~x=L~ -d3/2 if x~X'o, and 0 otherwise. Other kernels 
are smooth and thus avoid large energy costs from the block boundaries. 
A systematic study of different kernels will be given in Section 4 below. 

The s-dependent Metropolis acceptance rate for such proposals is 
given by 

s = (min[1, exp ( -  A J4~ ) (9) 

Here, ( ( . ) )  denotes the expectation value in the system defined by Eq. (1). 
Furthermore, 

A ~  = ~f(~b + s~9) - ~(~b) (10) 

(2(s) can be interpreted as the acceptance rate for shifting block spins by 
an amount of s, averaged over a sequence of configurations generated by 
a Monte Carlo simulation. Note that f2(s) does not depend on the algo- 
rithm that we use to compute it. Q(s) is a useful quantity when one wants 
to know how efficiently updates with increasing nonlocality (i.e., increasing 
block size Ls) can be performed. Of course, different choices of the kernel 

result in different acceptance rates. 
In actual Monte Carlo simulations, s is not fixed. In the same way 

as in the local Metropolis algorithm, s is a random number distributed 
according to some a priori probability density. If we choose s to be 
uniformly distributed on the interval [ - e ,  el, the integrated acceptance 
rate Paoc (as customarily measured in Monte Carlo simulations) is 
obtained by averaging O(s) as follows: 

- 1  S P = ~ ( e ) - ~  - ,  ds~(s) (11) 

It turns out to be a good rule to adjust the maximum Metropolis step size 
such that P,o~(e)~ 50%. 
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We consider every algorithm that updates stochastic variables on a 
hierarchy of length scales as a multigrid Monte Carlo algorithm. However, 
there are two different classes of multigrid algorithms: multigrid algorithms 
in a unigrid implementation and "explicit" multigrid algorithms. 

In the unigrid formulation one considers nonlocal updates of the form 
(7). Updates on the various layers of the multigrid are formulated on the 
level of the finest lattice A 0. There is no explicit reference to block spin 
variables ~b defined on coarser layers A k with k > 0. In addition, a unigrid 
also refers to a computational scheme: Nonlocal updates are performed 
directly on the level of the finest grid A o in practical simulations. 

In contrast, the explicit multigrid formulation consists of explicitly 
calculating conditional Hamiltonians depending on the block spin variables 

on coarser layers Ak. This formulation is possible if the conditional 
Hamiltonians are of the same type as or similar to the fundamental 
Hamiltonian. Then, the conditional probabilities used for the updating on 
the kth layer can be computed without always going back to the finest 
level Ao. Therefore, an explicit multigrid implementation reduces the com- 
putational work on the coarser layers (see the work estimates below). At 
least in free field theory, an explicit multigrid implementation is possible 
using nine-point prolongation kernels in two dimensions and generaliza- 
tions thereof in higher dimensions. (15'24) Generally, an explicit multigrid 
implementation for interacting models is only feasible in special cases with 
piecewise constant kernels. 

An algorithm formulated in the explicit multigrid style can always be 
translated to the unigrid language (that is how we are going to use the 
unigrid formulation). The reverse is not true, since not all nonlocat changes 
of the fundamental field configuration can be interpreted as updates of a 
single block spin variable of an explicit multigrid. As an example, one can 
use overlapping blocks in the unigrid style by translating the fields by a 
randomly chosen distance. (m 

If we formulate our kinematical analysis in the unigrid language, we 
nevertheless can include all algorithms formulated in the explicit multigrid 
style. 

The sequence of sweeps through the different layers Ak of the multigrid 
is organized in a periodic scheme called a cycle. (25) The simplest scheme is 
the V-cycle: The sequence of layers visited in turn is Ao, A1,...,AK, 
AK_I ..... Aa. More general cycles are characterized by the cycle control 
parameter 7. The rule is that from an intermediate layer A k one proceeds 
7 times to the next coarser layer Ak+l before going back to the next finer 
layer Ak_ 1. A cycle control parameter 7 > 1 samples coarser layers more 
often than finer layers. With 7 = 1 we obtain the V-cycle. 7 = 2 yields the 
W-cycle that is frequently used with piecewise constant kernels. 
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The computational work estimates for the different cycles are as 
follows(~5): The work for an explicit multigrid cycle is ~ L  d if 7 < la, where 
L denotes the lattice size. The work for a unigrid cycle is ~ L  dlog L if 

= 1, and --.L a+l~ if 7 > 1. Here, l denotes the blocking factor used in the 
iterative definition of the block lattices. 

If one wants the computational work in the unigrid style to not exceed 
(up to a logarithm) an amount proportional to the volume L d of the 
lattice, one has to use a V-cycle. Simulations with 7 > 1 (e.g., a W-cycle) 
can only be performed in the explicit multigrid style. 

3. AN A P P R O X I M A T I O N  F O R M U L A  FOR s 

In this section we shall derive an approximate formula for the quantity 
f2(s) defined in (9). We can write ~(s)  as 

dP e-ipu ( eip J.~ ~(s ) - -  f du rain(l, e - " ) f  ~ ) (12) 

Let us assume that the probability distribution of A ~  is approximately 
Gaussian. We parametrize this distribution as follows: 

d p r o b ( A ~ ) o c d A ~ e x p  - ~ ( A ~ - h l )  2 (13) 

with hl = ( A ~ )  and h2= � 8 9  2) -(AJUt~)2). Then 

(exp(ip A~4 ~) ) g exp(ih i p - h2 p2) (14) 

The integrations in Eq. (12) can be performed exactly since there are only 
Gaussian integrals involved. The result is 

1F ( hlm~ ( 2 h 2 - h ~ ]  
g2(s ) ~ 2 l_erfc \2 x/h2j + exp(h2 - h l ) erfc \ 2 x/~2 /A (15) 

with erfc(x)= 2/,,/~ ~ dt e x p ( -  t2). We shall now exploit the translational 
invariance of the measure ~ b  = N(~b + sO) to show that the difference of h~ 
and h2 is of order s 4. The starting point is the observation that 
( e x p ( - A ~ ) )  = 1. This implies that 

0" I a" 1 < ( _ 3 ~ ) m 5  c ,=o  gs - - -~ ln(exp(-A~xQ) ,=o=~-;s ~ ~ m.V = 0  (16) 
m = l  

( ( ' )>c  denotes the connected (truncated) expectation value. Note that 
there are no contributions in the sum for m > n. This follows from the fact 



614 Grabenstein and Pinn 

that AJef is of order s. Consequently, ( A ~ )  m = O(sm), and all contributions 
with m > n vanish in the limit s ~ 0. For n = 2 we obtain the relation 

02 s=  02 s=  O s 2 ( ( - A ~ ) + � 8 9  o - ~$2 ( - h i  + h2) o = 0  (17) 

If we assume that hi and h2 are even in s (which is the case if ~ is even 
in ~b), then Eq. (17) says that the difference of hi and h2 is of order s 4. 

We shall later demonstrate that the approximation h i g h 2  is in 
practice very good, even for small block size. In this case the acceptance 
rate prediction simplifies further, 

(2(s) ~ erfc[l(ha) 1/2 ] (18) 

(For an analogous result in the context of hybrid Monte Carlo see ref. 26.) 
For free massless field theory with Hamiltonian ;el(C)= �89162 -A~b), we 

get h i = h 2  = �89 2 with c~= (r - A r  and our approximation formula 
becomes exact: 

l-/0~\1/2 
.e(') =erfc Eta)I '1] (19) 

Equation (19) can be checked directly by using (exp( ipAYt~))= 
exp(ihl p -  h2 p2) in Eq. (12). This relation is exact in free field theory. 

4. C O A R S E - T O - F I N E  I N T E R P O L A T I O N  

In this section we discuss several choices of the coarse-to-fine inter- 
polation kernels. In order to have a "fair" comparison, all kernels r will be 
normalized according to Eq. (8). 

In free massless field theory, the quantity ~ = (r - A r  characterizes 
the decrease of the acceptance rate t2(s) of Eq. (19) with increasing shift s. 
Therefore it is natural to minimize ~ in order to maximize s for fixed s. 

The optimal kernel r . . . .  t from the point of view of acceptance rates 
can be defined as follows: minimize the quadratic form 

= (r - 3 r  (20) 

under the constraints that the average of r over the "central block" X'o is 
given by L~ -a)/2 and its average over blocks x ' r  X'o vanishes: 

L~  u ~, r forall x' eAk  (21) 
X E X '  
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This variational problem can be solved with the help of Fourier methods. 
The result is 

I//ex xact .~. L (B 2 + d)/2 ~ X ,  Xo (22) 

where SCx, x'o denotes the Gaw~dzki Kupiainen kernel (see, e.g., ref. 9). The 
use of this kernel leads to a complete decoupling of the different layers of 
the multigrid. This way of interpolating from a coarser block lattice A~ to 
the fine lattice Ao is well known in rigorous renormalization group 
theory. 127) It is interesting that considerations about optimizing acceptance 
rates in a stochastic multigrid procedure lead to the same choice of the 
interpolation kernel. 

Because 0 . . . .  t is nonvanishing on the whole lattice, it is not con- 
venient for numerical purposes. For an attempt to change the block spin 
qSx ~ on block X'o one has contributions to the change of the Hamiltonian 
from all lattice points. Therefore the computational work for a single 
update is proportional to the volume. 

We define a "truncated kernel" 0 t . . . .  by restricting the support of 0 
on the block X'o and its nearest neighbor blocks Y'o: 

0~u"c=0 if xCx'o or xCy'o, where y'on.n.x' o (23) 

In other words, the Laplacian in Eq. (20) is replaced by a Laplacian Ao 
with Dirichlet boundary conditions on the boundary of the support of 0. 
We again minimize ~ = (0, --AD0) under the 2d+  1 constraints that the 
average of 0 over the blocks X'o and its nearest neighbor blocks is given. 
This minimization can be performed numerically by a relaxation procedure. 
In order to maintain the normalization condition, one always updates 
simultaneously two spins residing in the same block, keeping their sum 
fixed. The 0 t . . . .  kernels were used in a multigrid simulation of the q~4 
model in four dimensions328) 

From a practical point of view, it is convenient to use kernels that 
have support on a single block X'o, i.e., 

0 x = 0  if x~X'o (24) 

We define a kernel 0 min with this property by minimizing c~ = (0, -Ao,x;O) 
under the constraint that the average of 0 over the block X'o is given. The 
Laplacian with Dirichlet boundary conditions on the boundary of X'o is 
defined as follows: 

(AD, x,oO)x=(-2dOx+ ~ Cy) for x~X'o (25) 
vn .n .x  
y e x '  o 

0 rain can be calculated using an orthonormal set of eigenfunctions of d D, x'o. 

822/71/3-4-17 
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We shall now discuss other kernels with support on the block that are 
frequently used in the literature. 

Piecewise constant interpolation: 

@x . . . . .  t{L(B 2-a)/2_ _ fOrfor x~X'oxq~X,o (26) 

This kernel has the advantage that for many models the conditional 
Hamiltonians used for updating on coarse grids are of the same type as or 
are similar to the fundamental Hamiltonian. This means that the condi- 
tional probabilities used for the updating on the kth layer can be computed 
without always going back to the finest level Ao. Therefore, an explicit 
multigrid implementation with a W-cycle can be used. 

Piecewise linear interpolation." We consider the block 

Xo= { x l x ~  {1, Z, 3,...,LB},l~= l ..... d} (27) 

The kernels for other blocks are simply obtained by translation. For LB 
e v e n ,  i~ linear is given by 

@lxi . . . .  ~-~/"  i~i { L ~ ; 1  
#=1 

is a normalization constant. 

Ground-state projection kernels: 

x ,  LB+2 1 A for X~Xo (28) 

Osine is the eigenfunction corre- 
sponding to the lowest eigenvalue of the negative Laplacian with Dirichlet 
boundary conditions - A D,x; : 

1~[ sin - -  x ~ 
p .= l  L s +  1 

for x ~ X'o 

for x g~ X'o 
(29) 

Again, A/ denotes a normalization constant. Note that this kernel is 
different from omin. A generalization of this kernel was introduced for 
scalar fields in the background of nonabelian gauge fields. (29) 

The results for the quantities c~= ( ~ , - A O )  for different kernels in 
two dimensions are presented in Table I. We used a 5122 lattice (~ . . . .  t 
depends on the lattice size). The different kernels are ordered according to 
increasing value of e. 

The values of e . . . .  t and et . . . .  are close together. This shows that the 
truncation of the support of ~ to the block and its nearest neighbor blocks 
is a good approximation to ~ . . . .  t (in the sense of acceptance rates). The 
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Table I. Results for o =  (u~, _A~u) in Two Dimensions, 5122 Lattice 

Kernel L e = 2  L e = 4  L B=8 L ~ = 1 6  L B=32 L B=64 L B=128 L~=256  

Exact 6.899 8.902 9.705 9.941 10.00 10.02 10.18 13.11 
Trunc 7.000 9.405 10.73 11.38 11.69 11.84 11.92 - -  
Min 8.000 13.24 18.48 22.58 25.23 26.76 27.59 28.02 
Sine 8.000 13.62 19.34 23.78 26.62 28.25 29.13 29.58 
Linear 8.000 15.80 24.58 31.84 36.68 39.51 41.05 41.84 
Const 8.000 16.00 32.00 64.00 128.0 256.0 512.0 1024 

value of c~ . . . .  t for LB = 256 is remarkably higher than on smaller blocks. 
This is a finite-size effect because the block lattice consists only of 22 points. 
Since the nearest neighbors overlap on a 22 lattice, no result for cd . . . .  is 
quoted for Le = 256. The values of c~ for the smooth kernels with support 
on the blocks 0rain, 0sin~, and ~1i . . . .  are of the same magnitude. We can see 
that o sine is almost as good as the optimal ~ = ~t  m i n .  

The results for different kernels in four dimensions are presented in 
Table II. Here we used a 644 lattice. In principle, the c~'s behave as in two 
dimensions. The values of (Z li . . . .  for small blocks are higher than c~ . . . .  t. 
The pyramids of the piecewise linear kernels have many edges in four 
dimensions, which lead to high costs in the kinetic energy. 

The Le dependence of the c~'s in d dimensions is 

= 2dLB for piecewise constant kernels 
(30) 

c~ ~ const for smooth kernels 
L B ~  1 

As an example, the expression for c~ ~ine in d dimensions is 

o;~ine=r2+atr~B ,~Bq- 1) 2a d+2dsm. 4 d + 2  L2(LB + ~^, _Tz 1)1 sin 2d(~----~---~\LB+ 1] (31) 

Table II. Results for a =  (u4, _Aqu) in Four Dimensions, 644 Lattice 

Kernel LB = 2 L B = 4 L s = 8 LB = 16 L B = 32 

Exact 14.48 20.38 23.48 24.71 30.62 
Trur~c 14.67 21.61 26.54 29.26 - -  
Min 16.00 27.72 41.56 54.18 63.33 
Sine 16.00 30.37 48.46 64.85 76.44 
Linear 16.00 39.02 70.78 101.0 122.9 
Const 16.00 32.00 64.00 128.0 256.0 
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For large block sizes we find 

~2d+ 2 
~sine LB~ I ) d ~ T = c o n s t  (32) 

From Table I we observe that in two dimensions ~ becomes almost inde- 
pendent of L~ for the smooth kernels if the block size is larger than 16. In 
four dimensions (Table II), we find ~(Ln)~  const only for ~ . . . .  t. The other 
~'s for the smooth kernels have not become independent of LB for the 
block sizes studied. 

5. A C C E P T A N C E  RATES IN FREE FIELD THEORY 

Recall that we have f2(s)=erfc[(e/8) 1/2 Is13 in massless free field 
theory, f2(s) is only a function of the product es 2. In order to keep s 
fixed when the block size LB increases, we have to rescale the changes s like 
~(LB) -m.  As a consequence, to maintain a constant acceptance rate in 
massless free field theory, s has to be scaled down like L~ 1/2 for piecewise 
constant kernels, whereas for smooth kernels the acceptance rates for large 
LB do not depend on the block size. 

Note that this behavior of the acceptance rates for large Lz~ is not yet 
reached in four dimensions for the block sizes studied (except for ~, . . . .  t). 
See also the discussion of the Metropolis step size below. At least for free 
field theory, the disadvantage of the piecewise constant kernels can be com- 
pensated for by using a W-cycle instead of a V-cycle. Smooth kernels can 
be used only in V-cycle algorithms. Exceptions are nine-point prolongation 
kernels in two dimensions and generalizations thereof in higher dimensions. 
They can also be used with a W-cycle, at least in free field theory (cf. 
Section 2). 

We now illustrate what this rescaling of s means for the Metropolis 
step size e in an actual multigrid Monte Carlo simulation. Look at the 
integrated acceptance probability defined in Eq. (11). If we insert the exact 
result (19) for massless free field theory, we get 

e,oo(e) =erfc L\~,/ ]e -I (rc~/8)1/2 (33) 

Paco is only a function of the product ~e2. In order to keep Pacc fixed (to, 
e.g., 50 % ), we have to rescale e(LB) like ~(Ls) -  2/2, exactly in the same way 
as we had to rescale s to keep 12(s) fixed. This Ln dependence is plotted in 
Fig. 1 for two dimensions and in Fig. 2 for four dimensions. 
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0.0 ~ J i p ~ I i i I b B 

i 0  E.O 4.0 8.0 16.0 3E.O 64.0 128.0256.0 

Fig. 1. Metropolis step sizes e(LB) for massless free field theory in two dimensions, 5122 
lattice, e(LB) is chosen in such a way that always P ~  = 0.5 holds. Symbols: full circles, ~e• 
full triangles, @~""c; empty circles, cmin; empty triangles, r full squares, ~,li,*a~; empty 
squares, r Lines are only drawn to guide the eye. 

 (LB) 
1.0 

0.5 

0 , 0  ' I , i I i n B 

1.0 2.0 4.0 8.0 16.0 32.0 

Fig. 2. Metropolis step sizes a(LB) for massless free field theory in four dimensions, 644 
lattice, a(LB) is chosen in such a way that always Paco = 0.5 holds. Symbols: full circles, r 
full triangles, ~,t~nc; empty circles, cmin; empty triangles, r full squares, OJine~; empty 
squares, ~o=~. Lines are only drawn to guide the eye. 
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We now discuss massive free field theory with Hamiltonian Yt~ 
�89 [ - A  + m2]~b). We find hi = �89 $2,  with am given by 

~m=(~,  E-A+mZ]O)=o~+m 2 ~ ~2 x (34) 
x E A o  

Therefore the exact result is f2(s)=erfc[(C~m/8) 1/2 Isl]. The term 5Zx$ 2 
scales ~ L ~  in arbitrary dimensions. For  piecewise constant kernels 

2 (O~c~ 2 = L2 (35) 
xEAo 

For osine kernels we find 

( O x )  =2aL2+d(Le + l) dsin4~ 2 (L~+  1 
x ~ A o  

and for large block sizes 

~ 2 d  
sine 2 ) ( 0 ~ )  L,~>I ~ L2 (37) 

x ~ A o  

If the block size L~ is smaller than the correlation length ~ = 1/m, hi is still 
dominated by the kinetic term s2(O, -A~k), and the discussion is the same 
as in the massless case. 

As soon as the block size LB becomes larger than 4, hi is dominated 
2 2 ~ t 2  s2L 2 by the mass term s m 2,x qJx ~ 8, and s has to be rescaled like s ~ L~ 1 

in order to maintain constant acceptance rates. Of course this is a dramatic 
decrease for large block sizes compared to s,,~const (using smooth 
kernels) in the massless case. Block spins on large blocks are essentially 
"frozen." But this is not dangerous for the performance of the algorithm in 
massive free field theory: The effective probability distribution for the block 
spins q5 is given by e x p [ - o ~ ( q ~ ) ] ,  where 3~efr(q~) denotes the effective 
Hamiltonian in the sense of the block spin renormalization group (for a 
recent review see ref. 30). The physical fluctuations of the block spins are 
dictated by an effective mass term 

2 2 2 2 2 m L 8 met r ~ ~b x, with mef r~  (38) 
X' G A k 

Thus, the algorithmic fluctuations (described by the mass term 
m2 Y'~x ~2 ~ mZL2B) and the physical fluctuations (described by the effective 
mass ~ m2L~) behave in a similar way, and the multigrid algorithm is able 
to create fluctuations just of the size that is needed by the physics of the 



Kinematics of Multigrid Monte Carlo 621 

model. Moreover, there is no need to do updates at length scales larger 
than ~ in order to beat CSD. 

In this sense, the discussed algorithmic mass term m 2 Zx 0 2 is well 
behaved for free field theory, since it decreases with the physical mass in 
the vicinity of the critical point. As we shall see in Section 6, for interacting 
models close to criticality, a different scenario is possible. There, it can 

y, 2 happen that an algorithmic "mass term" ~ x Ox persists, whereas the 
renormalized mass vanishes. If this happens, the multigrid algorithm is not 
able to produce the large critical fluctuations required by the physics, and 
we cannot expect that CSD will be eliminated. 

The LB dependence of the term Zz  O4x will also be needed in the study 
of the ~b 4 theory in Section 6 below. In d dimensions such a term scales 

L 4- d: For piecewise constant kernels 

2 . . . .  t 4 4--d (39) ( G )  =L~ 
x~Ao 

whereas using ~ino kernels, we find 

2 ( O x )  d 4+2d )a sinSd F rc l s i n  4d( rc ~ 
xeAo . . . .  t 4 = 6  LB (LB+ 1 L2(Ls+  1) \ L B +  l /  (40) 

In the limit of large block sizes this term behaves like 

2 (0 sine) 4 (37z4~d 
x LB,>~ \'-(-j-8/] L ; - d  (41) 

x~Ao 

In order to summarize the different large-LB behaviors of local 
operators in the kernel 6 discussed here, let us introduce the degree of 
relevance in the sense of the perturbative renormalization group: The (super- 
ficial) degree r of relevance of a local operator in q which is a polynomial 
of m scalar fields with n derivatives is defined by r =  d + m ( 2 - d ) / 2 - n .  
This definition is valid for smooth kernels. For large LB, an operator with 
degree of relevance r behaves like L~. An operator is called relevant if 
r > 0. As we have seen in the examples above, a mass term has r = 2, and 
a 0/14 term has r = 4 - d .  A kinetic term ~ =  (0, - A 0 )  has r = 0  for smooth 
kernels. 

The only difference for piecewise constant kernels is that the kinetic 
term behaves like c~ = (0, -A~k) oc LB. 

6. ACCEPTANCE RATES FOR INTERACTING MODELS 

In this section, we shall apply formula (18) in the discussion of 
multigrid procedures for three different spin models in two dimensions: the 
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sine-Gordon model, the J(Y model, and the single-component ~4 theory. 
The scale dependence of acceptance rates for interacting models will be 
compared with the behavior in free field theory, where CSD is known to 
be eliminated by a multigrid algorithm. 

6.1. T w o - D i m e n s i o n a l  S i n e - G o r d o n  M o d e l  

The two-dimensional sine-Gordon model is defined by the Hamiltonian 

W(~b) = + (~b, -Aq~) - ~ ~ cos ~b x (42) 
x 

The model undergoes a Kostertitz-Thouless phase transition at tic. 
In the limit of vanishing fugacity ~, the location of the critical fl is exactly 
known: tic ~ 87~ for ~ ~ 0. For fl > tic, the model is in the massless phase, 
and the flow of the effective Hamittonian (in the sense of the block spin 
renormalization group) converges to that of a massless free field theory: 
the long-distance behavior of the theory is that of a Gaussian model. Since 
multigrid algorithms have proven to be efficient in generating long- 
wavelength Gaussian modes, one might naively conclude that multigrid 
should be the right method to fight CSD in the simulation of the sine- 
Gordon model in the massless phase. But this is not so. For h~ we find the 
expression 

CZ $2 
h1=3-- ~ + ~ C ~ [ 1 - c o s ( s C x ) ]  (43) 

x 

with C =  (cos~bx). Recall that hl is the quantity that determines the 
acceptance rates s 

12(s) ,,~ erfc[�89 1/2 ] (44) 

The essential point is that the second term in (43) is proportional to the 
block volume L~ for piecewise constant and for smooth kernels (see the 
discussion in Section 5). This can be checked for small s by expanding in 
s. One therefore has to face a dramatic decrease of acceptance when the 
blocks become large, even for small fugacity ~. A constant acceptance rate 
is achieved only when the proposed steps are scaled down like L~ -1. It is 
therefore unlikely that any multigrid algorithm--based on nonlocal 
updates of the type discussed in this paper--will be successful for this 
model. 

We demonstrate the validity of formula (18) (using a Monte Carlo 
estimate for C) by comparing with Monte Carlo results at fl = 39.478 and 



Kinematics of Multigrid Monte Carlo 623 

= 1. This point is in the massless phase, where the correlation length p is 
of the order of the lattice size L. In Fig. 3 we show both the numerical and 
analytical results for f2(s) for L8 = 4, 8, 16, and 32 on lattices of size 162, 
322 , 642 , and 1282 , respectively. 

We tested the precision of our approximation formula for piecewise 
constant kernels only. However, we have no doubts that the quality of the 
approximation is also very good for other shape functions ~. 

6.2. Two-D imens iona l  XY Model  

We now discuss the two-dimensional X Y  model, defined by the 
partition function 

Z = f ~ d O x e x p I f l < x ~ , y > c o s ( O x - O y ) l  (45) 

The sum is over all unordered pairs of nearest neighbors in the lattice. Like 
the sine-Gordon model, the X Y  model has a massless (spin wave) phase for 
/~ >/~c and a massive phase for/~ </~c. The best available estimate for the 
critical coupling is/~c = 1. t 197 (5). (31 ) 

Nonlocal updates are defined by 

O x -+ O x + StP x (46) 

1.0 

0.5 

0.0 S 
0.0 0.5 1.0 

Fig. 3. g2(s) for piecewise constant kernels in the two-dimensional sine-Gordon model, 
fl=39.478, ( = 1 .  From top to bottom: LB=4, 8, 16, and 32 on a 162, 322, 642, and 1282 
lattice, respectively. Points with error bars: Monte Carlo results; lines: analytical results. 
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with 0 obeying again the normalization condition (8). To define a (linear) 
block spin, we rewrite the partition function (45) in terms of two- 
component unit vector spin variables sx: 

Z=fI-I[d2sx~(s:-l)]exp(~ ~ sx.sy) (47) 
x (x,y) 

The block spins Sx, are then defined as block averages of the unit 
vectors Sx. 

Note that the proposal (46) changes the block spin by an amount ~ s  
only when the spins inside the block are sufficiently aligned. This will be 
the case in the spin-wave phase for large enough /L For smaller /~, the 
correct (or "fair") normalization of the kernels 0 is a subtle point. We 
believe, however, that our argument is not affected by this in a qualitative 
way. 

The relevant quantity h I is given by 

hi=BE • { 1 - c o s [ s ( O x - O y ) l }  (48) 
(x,y) 

with E=(cos(Ox-Oy)); x and y nearest neighbors. For piecewise 
constant kernels, hi is proportional to LB. For smooth kernels hi will 
become independent of LB for large enough blocks. For small s, 

hi .~ �89 2 ( O x -  @),)2 = �89 (49) 
<x,y> 

As above, e = (@, -AO). This quantity becomes nearly independent of L8 
already for Le larger than 16 (cf. Section 4). 

From the point of view of acceptance rates the XY model therefore 
behaves like massless free field theory. A dynamical critical exponent z 
consistent with zero was observed in the massless phase. (32/ The failure of 
multigrid Monte Carlo in the massive phase (z ~ 1.4 for piecewise constant 
kernels (32)) is an example of the fact that good acceptance rates are not 
sufficient to overcome CSD. 

We again checked the accuracy of formula (18) by comparing with 
Monte Carlo results at/3 = 1.2 (which is in the massless phase, where the 
correlation length ~ is of the order of the lattice size L). The only numerical 
input for the analytical formula was the link expectation value E. The 
results are displayed in Fig. 4. 

One can make a similar discussion for the O(N) nonlinear o- model 
with N >  2, leading to the same prediction for the scale dependence of the 
acceptance rates. This behavior was already observed in multigrid Monte 
Carlo simulations of the 0(3) nonlinear ~ model in two dimensions with 
smooth and piecewise constant kernels. (12) 
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1.0 

625 

0.5 

0.0 S 
0.0 0.5 1.0 

Fig. 4. I2(s) for piecewise constant  kernels in the two-dimensional X Y  model, # = 1.2. From 
top to bottom: L B = 4, 8, and 16 on a 162, 322, and 642 lattice, respectively. Points with error 
bars: Monte  Carlo results; lines: analytical results. 

6.3. Two-Dimensional (i)4 Theory 

Let us now turn to single-component d-dimensional ~4 theory, defined 
by the Hamiltonian 

1 m2o 20 
(50) 

For hl one finds 

~ +  5 - + ~ - - P  ~2 x -~-S4~.~Z~. t4 (51) 
x 

where P =  @2) .  We have used the fact that expectation values of 
operators which are odd in ~b vanish on finite lattices. Recall that ~x  ~2 
increases with L~, independent of d, whereas Ex ~4 scales like L 4 d for 
smooth and for piecewise constant kernels (see the discussion of the dif- 
ferent kernels in Section 5). We conclude that also in this model we have 
to face rapidly decreasing acceptance rates when the blocks become large. 
As in the case of the sine-Gordon model, s has to be rescaled like L~ ~ in 
order to maintain constant acceptance rates. 

Therefore there is little hope that multigrid algorithms of the type 
considered here can overcome CSD in the one-component ~4 model. In 
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numerical  s imulat ions of  two-dimensional  ~b 4 theory,  a dynamical  critical 
behavior,  is found tha t  is consistent with z ~ 2 for piecewise cons tant  and 
for smoo th  kernels. (8'15'~6) In  four dimensions,  there is no definite est imate 
for z. (28) 

Figure 5 shows a compar i son  of Mon te  Car lo  results for two-dimen-  
sional ~b 4 theory with the theoretical  predict ion based on the numerical  
evaluat ion of  P. The  s imulat ions were done  in the symmetr ic  phase at 
m2o = - 0 . 5 6  and 2o = 2.4. The  corre la t ion length at  this point  is ~ ~ 15. (16) 

6.4. S u m m a r y  of  Sec t ion  6 

O u r  app rox ima t ion  formula  has p roven  to be quite precise. The  results 
for three different models  are consistent with the following rule: 

Sufficiently high acceptance rates for a complete  el iminat ion of C S D  
can only be expected if hA= ( ) f ( ~ b + s O ) - -  J~C'(~b)) contains  no relevant 
ope ra to r  in ~,. 

As we have seen above,  the typical candidate  for a relevant  opera to r  
in ~ is always an "a lgor i thmic  mass  te rm"  of the type 2 2 ~ s Y ,  x tP x with 
degree of relevance r = 2. 

This rule is formula ted  for smoo th  kernels. Fo r  piecewise constant  
kernels, it has to be modified. There, the kinetic te rm c~ oc LB is relevant  as 
well. At least in free field theory  this d isadvantage  can be compensa ted  for 

1.0 

0.5 

0.0 --%- s 
0.0 0.5 1.0 

Fig. 5. ff2(s) for piecewise constant kernels in the two-dimensional ~b 4 theory, mo 2 = -0.56, 
2o= 2.4. From top to bottom: LB= 4, 8, and 16 on a 162, 322, and 642 lattice, respectively. 
Points with error bars: Monte Carlo results; lines: analytical results. 
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by using a W-cycle. Apart from this modification the rule carries over to 
the case of piecewise constant kernels. 

In the following we are going to use our method of investigating the 
kinematics of a multigrid Monte Carlo algorithm for the development of 
new multigrid schemes. One is able to see before actually simulating with 
a new technique whether the algorithm under study will have a chance to 
overcome CSD. We focus on the problem of finding fast algorithms for 
lattice gauge fields. 

7. A M U L T I G R I D  P R O C E D U R E  FOR LATTICE G A U G E  FIELDS 

In this section we propose a multigrid procedure for pure lattice gauge 
theory and study the behavior of acceptance rates with increasing block 
size Le. 

We consider partition functions 

Z = f I~ dUx,. exp[ - ~f( U)] (52) 
X,]A 

The link variables Uz,~ take values in the gauge group U(1) or SU(N) ,  
and dU denotes the corresponding invariant Haar measure. The standard 
Wilson action -~(U) is given by 

(1 ) 
J t ~ ( U ) = f l ~  1 - ~ R e T r U ~  (53) 

The sum in (53) is over all plaquettes in the lattice. The Uv are path- 
ordered products around plaquettes N, 

U~ Ux ~,U~+F,,v * * = , Ux+~,~,Ux,~ (54) 

U* denotes the Hermitian conjugate (=inverse) of U. 

7.1. The Abel ian Case 

We now consider the case of gauge group U(1 ). The link variables are 
parametrized with an angle - ~  ~< 0x,~ < ~ through 

Ux,~ = exp(i0x,~) (55) 

Nonlocal updates can be defined as follows: One chooses a hypercubic 
block X'o of size Lan and a direction ~ with 1 ~< T ~< d. During the update, 
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will be kept fixed. All the link variables Ux,r attached to sites x inside the 
block x'o are proposed to be changed simultaneously: 

Ux,r ~ exp(is4/~) U~,r (56) 

Again, 4/ denotes an interpolation kernel as introduced in Section 4. This 
updating scheme was introduced and studied in two dimensions in ref. 13 
and also in four dimensions in ref. 22, using piecewise constant kernels. 
Of course, one can use all versions of smooth kernels as well, with their 
support not necessarily restricted to the block X'o. 

Let us now study the acceptance rates for these update proposals with 
the help of formula (18). We consider general kernels 4/. For  h~ = ( A ~ )  
we find 

h~=flP ~ ~ {1-cos[s(4/x+~-4/~)]} (57) 
x ~ A  0 u ~ T  

with P =  ( T r  U~).  The sum does not include contributions from links 
which point in the fixed z direction. If we denote the "slice" of lattice sites 
with v component t as A~= {xsAolxr = t}, we see that hi is a sum of inde- 
pendent contributions from slices orthogonal to the r direction. Therefore, 
no smoothness of kernels is needed in the r direction, and from now on we 
choose 4/x to be constant in that direction. Let us assume that the support 
of 4/in the z direction is contained in the block X'o. Then we find for small s 

hl~�89 ~, ~ (4/x+r (58) 
x ~ A rz tt ~ "c 

with Cr Here, 4/' denotes the kernel 4/ restricted to the 
(d-1) -d imensional  sublattice A~, multiplied with a factor L~ 2 in order to 
be properly normalized as a ( d -  1)-dimensional kernel. 

From the kinematical point of view, the behavior of acceptance rates 
in the U(1) lattice gauge theory in d dimensions is the same as in massless 
free field theory. One might therefore expect that it is possible for a multi- 
grid algorithm to overcome CSD in this model. Indeed, in numerical 
simulations in two dimensions using piecewise constant kernels, the 
dynamical critical exponent was found to be z,,~0.1. ~ However, it was 
also observed that the multigrid algorithm is not able to move efficiently 
between different topological sectors. The above-quoted exponent should 
therefore be interpreted with some care. For  the results of a study of a 
multigrid algorithm for four-dimensional U(1) theory see ref. 22. 

Let us conclude the discussion of the Abelian case with the remark 
that with no loss of generality one could consider blocks X'o that consist 
only of one layer in the v direction, i.e., effectively (d-1) -d imensional  
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blocks. This is a consequence of the fact that the updates of the two 
variables Ux,~ and Uy,~ are statistically independent if x~r This 
property carrys over to the non-Abelian case. 

7.2. The Non-Abelian Case: Gauge Group SU(2) 

7.2.1. Covariant Nonlocal Update Proposal. We shall now 
discuss a generalization of the above-described procedure to the non- 
Abelian case, To be concrete, we study four-dimensional SU(2) lattice 
gauge theory. 

Let us start with an attempt at a straightforward generalization of 
the procedure described for the Abelian theory. This would amount to 
proposing updates 

Ux,~-' U'.~= RxU .... (59) 

where the "rotation" matrices Rx are in SU(2). We parametrize them as 

Rx(n, s) = cos(s0x/2) + i sin(s0x/2 ) n. ~ (60) 

where n denotes a three-dimensional real unit vector, and the ai are Pauli 
matrices, t) will have support on three-dimensional blocks x' of size L~, 
and the blocks consist of points lying entirely in A~. 

We use the fact that updates of link variables in different slices are 
statistically independent (as discussed at the end of Section7.1). One 
possible updating scheme is to perform the proposed updates on different 
slices in sequence. Another possible updating scheme consists of building 
hypercubic four-dimensional blocks out of "staples" of Le three-dimen- 
sional blocks of size L 3 and to perform the updates on this hypercubic 
block simultaneously. Because of the independence of different slices, the 
analysis of acceptance rates is the same for both cases. For simplicity we 
study three-dimensional blocks here. 

The energy change associated with the update proposal (59) is 

J ~ =  - ~ - 2 T r ( U ~ -  U~) 
2 ~  

= -~- ~ ~ Tr[(R*Ux~R~+~- Ux,.)H*,~] (61) 
2 x~A~ ,uv~c ' " 

with H~,~-Ux+~,~Ux+e,~UK,~. The relevant quantity for the acceptance 
rates is hi = ( J ~ f ) .  For piecewise constant kernels 0 one gets 

h I ~ ~ A t ( L  B - 1 ) L 2 sin2(sL~ ~/2/2) + 3fiPL~[ 1 - cos(sL~ l/Z/2)] (62) 
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with 

A ' =  - < T r [ ( n "  ~Ux,~n �9 ~ -  Ux, v) H~,~] > 

P =  ( T r ( U ~ , ~ H * . ) )  = <Tr U~) 
(63) 

The first contribution to A' is the expectation value of a quantity that 
is not gauge invariant. Determining its gauge-invariant projection, we can 
show that this contribution vanishes: 

(Tr(~'nUx,~ef 'nHx*u))=f dV (Tr(n '~VUx, .n '~H*,~V*))=O (64) 

because for SU(2) 

I dVTr(AVBV*) A Tr B 1Tr (65) 

and the Pauli matrices are traceless. Therefore we get A ' =  P. 
To the first term in Eq. (62) all links contribute that are entirely inside 

the block, whereas the second term sums the contributions of all links that 
have one site in common with the surface of the block. For  small s, the first 
term behaves like s2L 2. This is exactly the behavior of a mass term that, 
as we learned in the previous sections, is toxic for the multigrid algorithm. 

The main difference from the Abelian case is that in addition to the 
costs from the surface of the block we have a contribution from the interior 
of the block. Unfortunately, this contribution grows quadratically with the 
block dimension Ls.  

This does not come as a surprise. Due to the gauge invariance of the 
model, the U's do not have a gauge-invariant meaning. Therefore the 
rotations Rx that are smooth over the block for a given gauge can be 
arbitrarily rough after a gauge transformation. It is therefore clear that the 
rotation matrices have to be chosen in a gauge-covariant way. 

We generalize the update proposal (59) as follows: 

U x ~ U ' T  = * (66) , , gx Rx gx Ux, 

with gxe SU(2). Note that in the Abelian case we obtain nothing new, 
because gx and Rx commute. In the non-Abelian case, we find for piecewise 
constant 

hx = fi-- ~ Ax ,, sin2(sL~ 1/2/2) q- 3flpL2[1 -- cos(sLy71/2/2)] (67) 
2 (x,x+r,)eX'o ' 

with 
, g g *  Ax ~ = - - ( T r [ ( n .  ~ug, un �9 o - Ux..) Hx,~,] ) (68) 
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= * H g Here we have introduced the notation U~,u gxUx,~gx+~. We define 
analogously. U g is the gauge field obtained by applying a gauge transfor- 
mation g to U. We are free to choose g. To obtain a valid Monte Carlo 
algorithm, we require that the g's should not depend on the link variables 
to be updated, i.e., those living on the links (x, x + "~). On the other hand, 
we want to minimize hi. Let us inspect the quantity A~, u defined in 
Eq. (68) that leads to the unwanted mass term behavior of hi. Consider the 
extreme case of/~-~ ~ .  Then the allowed configurations are pure gauges, 
i.e., configurations that are gauge equivalent to U~,u = 1 for all x, #. If we 
choose g as the transformation that transforms all links to unity, it is 
obvious that Ax,, is zero. In particular, to obtain this result, it is sufficient 
to gauge all links inside the block that do not point in the v direction to 
unity. This consideration leads to following proposal: Choose g as the 
gauge transformation that maximizes the functional 

Gc, x6(U, g ) =  ~ Tr(gxUx,,g*+a) (69) 
( x , x+~)~X 'o  

We call this gauge the "block Coulomb gauge." This gauge will bring the 
links inside the block as close to unity as possible, thus leading to a kind 
of minimization of Ax,, (corresponding to a minimization of the mass 
term). Note, however, that we do not intend to actually perform the gauge 
transformation. We use the concept of gauging only to define covariant 
rotations g~R~g*. Covariance here means that the relevant quantity 
Tr[(n'~Ug, u n ' ~ - u g , )  H g * l ,  x,~J is now gauge invariant. To see this, 
assume that we pass from U to U h by applying the gauge transformation 
h. The Coulomb gauge condition will then lead to a new g ' =  gh*. Now 
note that (Uh)gh* = U g. The same argument applies to H. 

Let us summarize the steps of the nonlocal updating scheme for 
SU(2): 

1. Choose a block X'o of size L 3 that is contained in the slice A~. All 
link variables Ux,~ pointing from sites x inside the block in the 
direction will be moved simultaneously. 

2. Find the gauge transformation g defined by the block Coulomb 
gauge condition 

Gc, x6(U, g ) =  ~ Tr(g~ * ' U~,ugx+~) -:- maximal (70) 
(x ,x  + ~ ) e x '  o 

3. Propose new link variables U~,, by 

t * Ux,~ -~ Ux,~ = gx Rx gx U~,~ (71) 

822/71/3-4-18 
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with 

Rx(n, s) = cos(s~gx/2) + i sin(S~x/2) n" ~ (72) 

s is a uniformly distributed random number from the interval 
I - e ,  ~], and n is a vector selected randomly from the three- 
dimensional unit sphere. 

4. Calculate the associated change of the Hamiltonian J ~  and 
accept the proposed link variables with probability 
rain [ 1, e x p ( -  3fft~)]. 

The detailed balance condition is fulfilled by this updating scheme: 
For  the naive version with g =  1 it is straightforward to show that the 
detailed balance condition holds, since the rotation matrices R~ are chosen 
according to a probability distribution which is symmetric around unity. 

If we now take g according to some gauge condition, we have to be 
careful that we get the same g before and after the move, Ux r ~ U' , x , ~ "  

Otherwise this move would not be reversible. In other words: The gauge 
condition yielding g must not depend on Ux,r This is indeed the case, since 
only link variables U~,, with # e v enter in the block Coulomb gauge 
functional. Note that we do not have to fix the gauge perfectly. If we 
always use the same procedure in finding g (e.g., a given number of relaxa- 
tion sweeps starting from g = 1), we will always get the same g and the 
nonlocal update is reversible. 

As usual we now choose different (possibly overlapping) blocks x', 
different block sizes LB, different slices A~, and different orientations ~ of 
the slices in turn. 

7.2.2. Acceptance Analysis for Nonlocal SU(2) Updates. 
First numerical studies revealed that there is no substantial difference in the 
acceptance rates when instead of using the block Coulomb gauge condition 
one uses the Coulomb gauge condition for the whole slice A~: 

Gc(U, g ) =  Z Tr(gx * U~,, gx+~) =" maximal (73) 
(x,x+~)~A~ 

From a practical point of view this gauge condition is very convenient, 
because the relaxation algorithm to determine the g~ can then be vectorized 
in a straightforward way. 

If we use the gauge condition (73), the quantity Ax, u becomes transla- 
tion invariant and also independent of # (where we still keep # ~ ~). We get 

h~ = (3fl/2) A ( L ~ -  1) L~ sinZ(sLB~/2/2) + 3flPL2B[1 - cos(sL~/2/2)] (74) 

with 
g g *  A = - - ( T r [ ( n "  ~U~,~n" ~ - U~,u) H~,~] > (75) 
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Following the discussion after Eq. (65), we identify the square root of A 
with a "disorder mass" roD, 

m D = , ~  (76) 

mD has the dimension of a mass. The presence of a finite mD would 
not be a problem if for large correlation length me scaled like a physical 
mass (see the discussion for massive free field theory in Section 5). 

7.2.3. M o n t e  Carlo S t u d y  of m o .  We computed mD by Monte 
Carlo simulations for several values of ft. To maximize Gc we used a 
standard Gauss-Seidel relaxation algorithm vectorized over a checker- 
board structure. The relaxation procedure consists in going through the 
lattice and minimizing the gauge functional (73) locally. For  production 
runs it would be advantageous to use an accelerated gauge-fixing algorithm 
such as overrelaxation or multigrid. (33) In the Monte Carlo studies reported 
in this section, we always used 50 Gauss-Seidel sweeps to determine g. 
Note that by this procedure, Gc is not entirely maximized, especially on 
very large lattices, where the relaxation algorithm suffers from CSD. 
However, for the detailed balance to be fulfilled, we only need that one uses 
always the same number of relaxation sweeps. Several tests revealed that 
increasing the number of relaxation sweeps beyond 50 did not affect the 
acceptance rates in a substantial way. In our implementation, 50 Gauss-  
Seidel sweeps over all slices of a given direction ~ required the same CPU 
time (on a CRAY Y-MP) as four Creutz heat-bath SU(2) update sweeps. 

We checked the validity of the acceptance formula (18) using Monte 
Carlo estimates for mD and P. Figure 6 shows results for fl = 2.6 on a 204 
lattice. The results perfectly justify the usage of the approximation formula. 
It is therefore sufficient to study the behavior of the quantities mD and P. 
Our Monte Carlo results are presented in Table III. The last column gives 
the statistics in sweeps (equilibration sweeps are not counted here). We 
used a mixture of four microcanonical overrelaxation sweeps followed by a 
single Creutz heat bath sweep. Measurements (including the determination 
of g) were performed every 25 sweeps. 

In Table IV we display the ratios of the disorder mass mD with two 
physical masses, the square root of the string tension • and the lowest glue 
ball mass too+. The estimates for the physical masses are taken from ref. 34. 
The results show that the disorder mass is nearly independent of fl in the 
range studied, whereas the physical masses decrease by roughly a factor of 
two. Thus, m o is not scaling like a physical mass for the couplings studied 
here. We conclude from this that for large blocks the term quadratic in 
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1.0 

0.5 

0.0 S 
0.0 0 .5  1.0 

Fig. 6. t2(s) in four-dimensional SU(2) lattice gauge theory using piecewise constant kernels, 
/3=2.6 on a 204 lattice. From top to bottom: LB=2, 4, 8, and 16. Points with error bars: 
Monte Carlo results; lines: analytical results using m D and P from Monte Carlo (errors 
smaller than line width). 

LB will strongly suppress the acceptance rates even when the ratio of 
correlat ion length and block size L B is kept constant.  

However ,  one could hope that  the value of  the unwanted  mass term 
is so small that  it does no ha rm in practical calculations. Let us examine 
the effect of this mass term in more  detail. Recall that  hi is built up from 
two contributions.  The first contr ibut ion is that  related to the gauge field 
disorder inside the block and is quanti tat ively represented by the mass m o .  

The second contr ibut ion is associated with the block surface. The latter can 
of  course be made smaller by using smooth  kernels ~ instead of  the 
piecewise constant  kernels discussed so far. However,  the disorder term 

Table III. M o n t e  Carlo Resul ts  for m D and P 

Lattice size /3 mD P Statistics 

84 2.4 0.717(3) 1.2609(5) 10,000 
124 2.4 0.7010(6) 1.2601(3) 10,000 
164 2.4 0.7007(3) 1.2599(1) 10,000 

84 2.6 0.703(6) 1.3407(3) 30,000 
124 2.6 0.657(2) 1.3403(2) 20,000 
164 2.6 0.6568(5) 1.3401(1) 10,000 
204 2.6 0.6576(3) 1.3402(1) 5,000 
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Table IV. Comparison of m o with Physical Masses 

635 

Lattice size fl rn D x ~  mo+ mD/x/~ mD/mo+ 

164 2.4 0.7007(3) 0.258(2) 0.94(3) 2.72 0.75 
204 2.6 0.6576(3) 0.125(4) 0.52(3) 5.26 1.26 

cannot be expected to become smaller for smooth kernels (see below). In 
Fig. 7 we plot separately the two contributions to hi, 

hl,A = (3f l /2)A(LB- 1) L~ sin2(sL) - 1/2/2) 
(77) 

hl,e = 3fiPL~[1 - cos(sLy1~2~2)] 

for f i=2.6 and block size LB= 8 on a 20  4 lattice. The plot shows that 
already for this block size the disorder contribution is by no means small-- 
it is comparable to the surface effect. It is therefore not clear that one could 
achieve any significant improvement by using smooth kernels. To 
investigate this in more detail, we derive an expression for hi, valid for 
smooth kernels as well: 

hl:3~ S2A 2 ~12Jf--~ S2(r-A)~3"~-O(S4) (78) 
x~A~ 

Since ~ 02x~L 2, we get essentially the same behavior for the disorder 
contribution as in the case of piecewise constant kernels. 

/ 
2.0 , ~  

0.0 i S 

0.0 0.2 0.4 0.6 
Fig. 7. Comparison of disorder and surface effects for four-dimensional SU(2) lattice gauge 
theory using piecewise constant kernels on an 83 block, fl = 2.6 on a 204 lattice. Solid line: 
hl,A(s) (disorder effects); dashed line: hl,e(s) (surface effects). 

4.0 
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For  smooth O~m~ kernels we show separately in Fig. 8 the two 
contributions to h~, 

3~fl8 s2(p- A) ~3 (79) hl, = E 0 x, 
x~A~ 

for /~ = 2.6 and block size L~ = 8 on a 204 lattice. We observe that the 
surface effects are lowered by the smooth kernels, but the disorder 
contribution is even higher than for piecewise constant kernels. 

Piecewise constant kernels have the practical feature that once the 
change of the Hamiltonian has been calculated, one can perform multihit 
Metropolis updating or microcanonical overrelaxation. In a special case, 
even an explicit multigrid implementation with a W-cycle is possible (see 
below). For  smooth kernels the change in the Hamiltonian would have to 
be calculated again and again. Also, the advantage of smooth kernels is 
not that clear on small three- or four-dimensional blocks. For an actual 
simulation we would therefore prefer piecewise constant kernels. 

7.2.4. Maximally Abelian Gauge. Our proposal for the choice 
of g was motivated by the desire to minimize the quantity A. We now ask 
whether there is a better choice of g than the g determined by the Coulomb 
gauge condition. For  the sake of simplicity let us take n = (0, 0, 1), i.e., 
n ' o  �9 = 0" 3. Then A is given by 

A = - ( T r [ ( o -  3 g _ g g* Ux,~ 3 Ux,~) H~,~] ) (80) 

hlA hip 
4.0 

/ 

2.0 ..'~ 

0.0 ' s 

0.0 0.2 0.4 0.6 

Fig. 8. Comparison of disorder and surface effects for the four-dimensional SU(2) lattice 
gauge theory using smooth r kernels on an 83 block, /~ = 2.6 on a 204 lattice, quadratic 
approximation used. Solid line: hl,A(s) (disorder effects); dashed line: hi, p A(s) (surface 
effects). 
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The choice of the Coulomb gauge condition aimed at bringing Uxe,~ as close 
to unity as possible. Alternatively, one might require that ug~ should be 
as close as possible to an SU(2) matrix of the form ao + ia3a3. This will 
also lead to a small A. The corresponding gauge transformation g can be 
found by maximizing the functional 

GA(U, g ) =  Y', Tr(a3 U~,,,a3 g U g*~,~,,i (81) 
(x,x + fOe A~ 

leading to the maximally Abelian gauge, (35) here implemented only on a 
slice. We computed mD also using the g's resulting from this gauge condi- 
tion and compared the results with the ones obtained by using the 
Coulomb gauge condition. We did not find a substantial difference. We 
prefer the Coulomb gauge condition because it does not depend on the 
direction n and thus saves computer time. 

7.2.5. Proposal  fo r  an Imp lemen ta t i on .  An explicit multigrid 
implementation is possible in a special case if we use piecewise constant 
kernels. This was pointed out in ref. 22 in a related context. 

The idea is tO update only a fixed U(1) subgroup of SU(2) globally: 
We divide the fundamental lattice Ao into hypercubic blocks x' of size 2 4 

and "rotate" all links going from sites x ~ x' in a fixed r direction with the 
same angle 0~, : 

U x ~ U ' x ~ =  * , , g~Rxg~U~,~ (82) 

with 

Rx(nx,, 0~,) = cos(0~,/2) + i sin(0~,/2) n~,. n (83) 

The gauge transformation g is obtained by imposing the Coulomb gauge 
condition on slices A; as defined above. We now consider the special case 
where the directions nx, of the embedded U(1) subgroups are independent 
of the block x', i.e., n~,=n for all x '~A1.  Then we get a conditional 
Hamiltonian .)f~(0) by substituting the "rotated" gauge field U' in the 
fundamental Hamiltonian. By iterating this procedure, one gets conditional 
Hamiltonians 5/gk(0) on coarser layers Ak. The point is that in the special 
case considered here Jugk(0 ) always stays of the form 

__O~k(0 ) --__ 1 2 {flc~; COS2(0x ,) + tics COS(0x,) sin(0x,) + fl~x*' sin2(0x') } 
x'  ~Ak 

+�89 ~ ~ {fl~,'~,cos(Ox,)cos(Ox,+f~)+fi~s,,~,cos(Ox,)sin(Ox,+,) 

+/?sex,,, sin(0x,) cos(0x, + r + fi~,~ sin(0x,) sin(0x, + ~) } 

+ const (84) 



638 Grabenstein and Pinn 

with space-dependent couplings that can be recursively calculated from the 
couplings defined on the next finer layer Ak_ 1. Therefore, a W-cycle is 
possible. Of course, this implementation is also possible with three- 
dimensional blocks. 

8. S U M M A R Y  

We have presented a simple yet accurate formula that expresses accep- 
tance rates for nonlocal update algorithms in terms of one single parameter 
(or two in the case of non-Abelian gauge theory) entering the quantity hi. 
This parameter is easy to compute, e.g., by Monte Carlo simulations on a 
small lattice. We encountered two classes of models. For sine-Gordon, ~4 
theory, and SU(2) lattice gauge theory, s had to be rescaled like LB 1 for 
piecewise constant and for smooth kernels, whereas for massless free field 
theory, the XY model, the O(N) nonlinear a-model, and U(1) lattice gauge 
theory one can achieve Ls-independent acceptance rates by choosing 
smooth kernels. 

We can compare the behavior of the acceptance rates in interacting 
models with free field theory, where CSD is known to be eliminated by a 
multigrid algorithm. In order to do this, we presented a study of the 
influence of the coarse-to-fine interpolation on the acceptance rates in free 
field theory. 

The results of the comparison are consistent with the following rule: 
For an interacting model, sufficiently high acceptance rates for a complete 
elimination of CSD can only be expected if hi = <~f'(~b + sO) - ~(~b) ) 
contains no algorithmic "mass" term ~ s  2 ~x  02x �9 With the help of this 
rule it is possible to decide whether a given statistical model is a natural 
candidate for multigrid Monte Carlo or not. 

The kinematical mechanism that can lead to a failure of direct 
generalizations of multigrid algorithms from free field theory to interacting 
models is well described by our analysis. We hope that a better under- 
standing can lead to improved multigrid algorithms that can overcome 
kinematical obstructions stemming from an algorithmic "mass" term. 

The acceptance rates of our proposal for nonlocal updates in SU(2) 
lattice gauge theory were investigated in detail. Here we found that an 
algorithmic "mass" term generated by the disorder in the gauge field sup- 
presses the acceptance rates on large blocks. From this study we do not 
expect that our algorithm will have a chance to overcome CSD. We think 
that the best method for a numerical experiment in order to check our 
prediction would be an explicit multigrid implementation using piecewise 
constant kernels and a W-cycle. An implementation and test is planned. 
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The crucial question is, of course, whether one is able to beat the over- 
relaxation algorithm. 
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NOTE ADDED IN PROOF 

We implemented and tested our proposal for SU(2) gauge fields in four 
dimensions, using an explicit multigrid algorithm with three-dimensional 
blocks, as described in Section 7.2.5. On an 8 4 lattice, with fl = 2.4 and 
fl = 2.6, we did not observe any substantial speed up compared to a local 
heat bath algorithm (not even a constant factor). 
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